

One-Step Redox Route to N-Heterocyclic Phosphenium Ions

Gregor Reeske and Alan H. Cowley*

Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712

Received October 12, 2006

One-step reactions of the appropriate N-alkyl-, N-cycloalkyl-, and N-aryl-substituted α-diimines with PI₃ afforded

>80% yields of the triiodide salts of the following N-heterocyclic phosphenium ions, $[(R_1NC(R_2)C(R_2)NR_1)P]^+$: 3 ($R_1 = t$ -Bu; $R_2 = H$); 4 ($R_1 = 2,6$ -*i*-Pr₂C₆H₃; $R_2 = H$), 5 ($R_1 = Mes$; $R_2 = H$), 6 ($R_1 = 2,6$ -*i*-Pr₂C₆H₃; $R_2 = H$), and 7 ($R_1 = cyclohexyl$; $R_2 = H$). Treatment of 3 and 6 with NaB(C₆H₅)₄ resulted in virtually quantitative yields of the corresponding [B(C₆H₅)₄]⁻ salts 8 and 9, respectively. The X-ray crystal structures of 3 and 5–9 were determined.

Introduction

N-Heterocyclic phosphenium ions (1) have attracted recent attention because of their isovalent relationship to Nheterocyclic carbenes (NHCs) and their heavier group 14 analogues.¹ Interestingly, a structurally authenticated phosphenium ion of this type (1: $R_1 = R_4 = Cy$; $R_2 = Cl$; $R_3 =$ H) was reported² prior to the first stable NHC.³ This

particular cation was isolated as the hexachloroantimonate salt by treatment of the precursor phosphorus chloride with SbCl₅, which, in turn, had been synthesized in 73% yield via the reaction of CyN=CHCH=NCy with PCl₃ in the

presence of Et₃N.⁴ Halide ion abstraction has also been effected by other Lewis acids such as GaCl₃.⁵ These reactions result typically in >90% yields of the desired salts. However, as in the case of the earlier work,^{2,4} the overall yields are more modest because one or two lower yield steps are required to convert the diimine into the phosphorus-halo phospholene precursor. A similar comment applies to the conversion of phosphorus-halo phospholenes into the corresponding N-heterocyclic phosphenium salts via metathetical reaction with, e.g., $AgPF_{6}$,⁵ or by means of a Me₃SiCl elimination reaction with Me₃SiOTf.⁶ The salt elimination reaction of the dilithio derivative LiN(t-Bu)C=CN(t-Bu)Li with PCl₃ has also been used to generate the corresponding phosphorus-chloro compound,⁷ but once again the yield is relatively poor (55%). However, it has been found subsequently that overall yields of 70-80% can be realized if the dilithium salts are quenched by protonation with Et₃NHCl and the resulting α -aminoaldimines are treated with PCl₃ in the presence of Et₃N.⁸ Conversion to the corresponding triflate salts can be achieved in >85% yields.⁹ Nevertheless,

- (7) Carmalt, C. J.; Lomelí, V.; McBurnett, B. G.; Cowley, A. H. Chem. Commun. 1997, 2095.
- (8) Burck, S.; Gudat, D. Nieger, M.; Du Mont, W.-W. J. Am. Chem. Soc. 2006, 128, 3946.
- (9) Gudat, D.; Haghverdi, A.; Hupfer, H.; Nieger, M. Chem.-Eur. J. 2000, 3414.

^{*} To whom correspondence should be addressed. E-mail: cowley@ mail.utexas.edu. Fax: 1-512-471-7484.

For reviews, see: (a) Cowley, A. H.; Kemp, R. A. Chem. Rev. 1985, 85, 367. (b) Sanchez, M.; Mazières, M. R.; Lamandé, L.; Wolf, R. In Multiple Bonds and Low Coordination Chemistry in Phosphorus Chemistry; Regitz, M., Scherer, O., Eds.; Georg Thieme Verlag: Stuttgart, 1990; Vol. D1, p 129ff. (c) Gudat, D. Coord. Chem. Rev. 1997, 163, 71.

⁽²⁾ Litvinov, I. A.; Naumov, V. A.; Gryaznova, T. V.; Pudovik, A. N.; Kibardin, A. M. Dokl. Akad. Nauk SSSR 1990, 312, 623.

⁽³⁾ Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361.

⁽⁴⁾ Kibardin, A. M.; Litvinov, I. A.; Naumov, V. A.; Struchkov, Yu. T.; Gryaznova, T. V.; Mikhailov, Yu. B.; Pudovik, A. N. Dokl. Akad. Nauk SSSR 1988, 298, 369.

^{(5) (}a) Denk, M. K.; Gupta, S.; Ramachandran, R. *Tetrahedron Lett.* **1996**, 37, 9025. (b) Denk, M. K.; Gupta, S.; Lough, A. *Eur. J. Inorg. Chem.* **1999**, 41.

⁽⁶⁾ Gudat, D.; Holderberg, A. W.; Kotila, S.; Nieger, M. Chem. Ber. 1996, 129, 465.

Table 1.	Crystallographic	Data and Exp	perimental Parameter	rs for the X-ra	ay Structure Ar	nalyses
----------	------------------	--------------	----------------------	-----------------	-----------------	---------

	3.THF	5	6	7	8	9
formula	C ₁₄ H ₂₈ I ₃ N ₂ OP	C ₂₀ H ₂₄ I ₃ N ₂ P	C ₂₆ H ₃₆ I ₃ N ₂ P	$C_{14}H_{24}I_3N_2P$	C ₃₄ H ₃₈ BN ₂ P	C50H56BN2P
fw	652.05	704.08	788.24	632.02	516.44	726.75
cryst syst	monoclinic	monoclinic	triclinic	triclinic	orthorhombic	monoclinic
space group	P21/c	C2/c	$P\overline{1}$	$P\overline{1}$	Pbca	$P2_{1}/c$
$T(\mathbf{K})$	153(2)	153(2)	153(2)	153(2)	153(2)	153(2)
λ (Å)	0.710 69	0.710 69	0.710 69	0.710 69	0.710 73	0.710 69
a (Å)	12.993(5)	21.647(4)	9.861(5)	13.817(5)	9.7482(19)	20.593(5)
b (Å)	15.126(5)	7.5469(15)	10.501(5)	17.943(5)	17.553(4)	17.637(5)
c (Å)	12.254(5)	16.488(3)	16.856(5)	18.382(5)	34.013(7)	23.597(5)
α (deg)	90	90	89.522(5)	82.750(5)	90	90
β (deg)	110.922(5)	112.69(3)	78.766(5)	68.210(5)	90	91.069(5)
γ (deg)	90	90	80.179(5)	70.130(5)	90	90
$V(Å^3)$	2249.5(15)	2485.1(10)	1686.4(13)	3980(2)	5820(2)	8569(4)
cryst size (mm ³)	$0.20 \times 0.18 \times 0.16$	$0.13 \times 0.11 \times 0.11$	$0.05 \times 0.03 \times 0.02$	$0.18 \times 0.15 \times 0.15$	$0.18 \times 0.18 \times 0.10$	$0.15 \times 0.14 \times 0.12$
d_{calcd} (g cm ⁻³)	1.925	1.882	1.552	2.110	1.179	1.127
Ζ	4	4	2	8	8	8
$\mu ({\rm mm}^{-1})$	4.241	3.844	2.842	4.787	0.120	0.099
F(000)	1232	1328	760	2368	2208	3120
2θ range (deg)	2.15-27.50	2.68 - 27.45	1.97-27.50	2.95 - 27.50	2.40-27.47	1.52-27.49
no. of reflns colld	9040	4601	12191	28143	11712	33860
no. of ind reflns	5151 [R(int) = 0.0274]	2828 [R(int) = 0.0235]	7642 [R(int) = 0.0218]	18017 [R(int) = 0.0433]	6425 [R(int) = 0.0520]	19610 [R(int) = 0.0486]
no. of data/ restraints/ param	5151/0/200	2828/0/123	7642/0/297	18017/0/721	6425/7/350	19610/4/1005
GOF, F^2	1.078	1.065	1.107	1.103	1.023	1.014
$R_1, wR_2 [I > 2\sigma(I)]$	0.0341, 0.0738	0.0446, 0.1129	0.0450, 0.1163	0.0641, 0.1462	0.0672, 0.1755	0.0553, 0.1102
R_1 , w R_2 (all data)	0.0635 0.0845	0.0609, 0.1244	0.0820, 0.1267	0.1169, 0.1651	0.1130, 0.2051	0.1124, 0.1314
peak/hole (e Å ⁻³)	0.893/-0.871	1.831, -1.796	0.931, -1.082	1.817, -1.541	0.562, -0.528	0.327, -0.322

given the above brief summary, it is clear that a one-step, high-yield synthesis of N-heterocyclic phosphenium salts would be desirable.

Pioneering work by Schmidpeter et al.¹⁰ established that the reduction of PCl₃ with SnCl₂ in the presence of chelating bis(phosphines) results in so-called triphosphenium ions (2) in which the central P atom possesses a formal 1+ oxidation state. While the mechanism of formation of 2 has not been established, it is reasonable to assume that the redox reaction $PCl_3 + SnCl_2 \rightarrow "PCl" + SnCl_4$ is followed by chloride ion transfer to SnCl₄ from either free or chelated "PCl". Schmidpeter et al.¹¹ also demonstrated that acyclic analogues of 2 can be isolated when two monodentate tertiary phosphines are used in place of a chelating bis(phosphine). Interest in the general area of P⁺ chemistry has been rekindled recently not only in terms of the variety of chelating phosphines that are capable of trapping this univalent cation¹² but also from the standpoint of new methods of generation. For example, Macdonald et al.¹³ have shown that NHCs are capable of both reducing PCl₃ and trapping the resulting P⁺ entity as cations of the type $[(NHC)-P-(NHC)]^+$. Moreover, this same group¹⁴ established that chelating bis(phosphines)

- (10) Schmidpeter, A.; Lochschmidt, S.; Sheldrick, W. S. Angew. Chem., Int. Ed. Engl. 1982, 21, 63.
- (11) Schmidpeter, A.; Lochschmidt, S.; Sheldrick, W. S. Angew. Chem., Int. Ed. Engl. 1985, 24, 226.
- (12) For summaries, see: (a) Boon, A. J.; Byers, H. L.; Dillon, K. B.; Goeta, A. E.; Longbottom, D. A. *Heteroatom Chem.* **2000**, *11*, 226.
 (b) Barnham, R. J.; Deng, R. M. K.; Dillon, K. B.; Goeta, A. E.; Howard, J. A. K.; Puschmann, H. *Heteroatom Chem.* **2001**, *12*, 501.
- (13) Ellis, B. D.; Dyker, C. A.; Decken, A.; Macdonald, C. L. B. Chem. Commun. 2005, 1965.

will cause disproportionation of PI₃, thus forming the iodide salt of 2 along with molecular iodine. Some of our own work in this area has focused on the use of the chelating 1,2-bis-(arylimino)acenaphthene (aryl-BIAN) ligand class for entrapment of univalent group 15 cations. In contrast to previous work, it was shown that in the compounds [(dpp-BIAN)P]-[SnCl₅•THF] and [(dpp-BIAN)P][I₃] (dpp = 2,6-i-Pr₂C₆H₃; THF = tetrahydrofuran) the oxidation state of P is 3+because of the transfer of two electrons from P into the lowlying lowest unoccupied molecular orbital (LUMO) of the BIAN ligand.¹⁵ In turn, this result suggested a new one-step route to N-heterocyclic phosphenium salts, viz., the reaction of α -diimines with PI₃.¹⁶ A potentially successful outcome for this redox route was indicated by our observation that "PCI" and "AsCI", generated by the Schmidpeter et al. route,¹⁰ react with α -dimines to produce the [SnCl₅·THF]⁻ salts of N-heterocyclic phosphenium and arsenium cations, respectively.¹⁷ Moreover and retrospectively, it is possible that a redox reaction of this type is involved in the reaction of an N-heterocyclic germylene with PCl₃ and AsCl₃ to form the $[GeCl_5]^-$ salts of the corresponding phosphenium and arsenium cations.7

Experimental Section

General Procedures. All manipulations and reactions were performed under a dry, oxygen-free, catalyst-scrubbed Ar atmosphere using a combination of standard Schlenk techniques or in

(17) Reeske, G.; Cowley, A. H. Chem. Commun. 2006, 1784.

^{(14) (}a) Ellis, B. D.; Carlesimo, M.; Macdonald, C. L. B. *Chem. Commun.* 2003, 1946. (b) Ellis, B. D.; Macdonald, C. L. B. *Inorg. Chem.* 2006, 45, 6864.

⁽¹⁵⁾ Reeske, G.; Hoberg, C. R.; Hill, N. J.; Cowley, A. H. J. Am. Chem. Soc. 2006, 128, 2800.

⁽¹⁶⁾ While the present manuscript was being prepared, Macdonald et al. reported the reaction of the α -diimine ArNC(Me)C(Me)NAr (Ar = 2,6-*i*-Pr₂C₆H₃) with PI₃. Ellis, B. D.; Macdonald, C. L. B. *Inorg. Chim. Acta* **2006**, DOI: 10.1016/j.ica.2006.07.047.

Table 2. Selected Bond Distances (Å) and Bond Angles (deg) for the Phosphenium Ions

param	3	5	6	7	8	9
C(1)-C(2)	1.353(6)	1.342(9)	1.342(6)	1.344(17)	1.352(4)	1.355(3)
N(1) - C(1)	1.366(5)	1.371(6)	1.376(6)	1.388(15)	1.371(3)	1.387(3)
N(2) - C(2)	1.373(5)	1.371(6)	1.400(5)	1.370(15)	1.365(4)	1.370(4)
N(1) - P(1)	1.664(3)	1.665(3)	1.674(4)	1.673(10)	1.668(2)	1.686(2)
N(2)-P(1)	1.663(4)	1.665(3)	1.673(3)	1.679(10)	1.656(2)	1.664(3)
N(1) - P(1) - N(2)	90.14(17)	89.4(2)	89.75(17)	89.4(5)	90.09(11)	89.22(12)
N(1)-C(1)-C(2)	111.3(4)	111.4(2)	111.5(4)	112.7(11)	110.6(3)	111.5(3)
N(2)-C(2)-C(1)	111.7(4)	111.4(2)	111.5(4)	110.4(10)	112.3(3)	111.0(2)

an M-Braun or Vacuum Atmospheres drybox. All glassware was oven-dried and vacuum- and argon-flow-degassed before use. All solvents were distilled over sodium benzophenone ketyl, except dichloromethane, which was distilled over CaH2 and degassed prior to use. The α -diffines RNC(H)C(H)NR [R = t-Bu,¹⁸ Mes,¹⁹ 2,6*i*-Pr₂C₆H₃,¹⁹ Cy,²⁰ and (*p*-tol)NC(Me)C(Me(*p*-tol))]²¹ were prepared according to the literature procedures. Phosphorus triiodide and Na-[B(C₆H₅)₄] were obtained from commercial sources and used without further purification.

Physical Measurements. Low-resolution chemical ionization (CI) mass spectral (MS) data were collected on a Finnigan MAT TSQ-700 mass spectrometer, and high-resolution CIMS spectra were recorded on a VG Analytical ZAB-VE sector instrument. All MS analyses were performed on samples that had been sealed in glass capillaries under an Ar atmosphere. Solution-phase NMR spectra were recorded at 298 K on a Varian Inova instrument (1H NMR, 300.14 MHz; ¹³C NMR, 75.48 MHz; ³¹P NMR, 121.52 MHz) immediately following removal of the samples from a drybox. The ¹H and ¹³C{¹H} chemical shift values are reported in parts per million (ppm) relative to SiMe₄ (δ 0.00), using residual solvent resonances as internal standards. The ³¹P chemical shift values are reported relative to external 85% H₃PO₄.

X-ray Crystallography. Crystals of 3 and 5–9 were removed from Schlenk flasks under positive Ar pressure, placed on glass slides, covered with degassed hydrocarbon oil, and mounted on thin nylon loops. The X-ray diffraction data were collected at 153-(2) K on a Nonius Kappa CCD area detector diffractometer equipped with an Oxford Cryostream low-temperature device and a graphite-monochromated Mo K α radiation source ($\lambda = 0.71073$ Å). Corrections were applied for Lorentz and polarization effects. All six structures were solved by direct methods and refined by full-matrix least-squares cycles on F^{2,22} All non-H atoms were refined with anisotropic thermal parameters, and H atoms were placed in fixed, calculated positions using a riding model (C-H 0.96 Å). Pertinent experimental data are listed in Table 1, and selected metrical parameters are compiled in Table 2.

Syntheses of 3–7. A solution of PI₃ in 30 mL of CH₂Cl₂ was added dropwise to a solution of the appropriate α -diimine ligand in 30 mL of CH₂Cl₂ over a period of 30 min. The reaction mixture was stirred for 12 h and then filtered through Celite. Removal of the volatiles under reduced pressure resulted in the formation of the powdered products, which were subsequently recrystallized from a 2:1 dichloromethane/hexane mixture at -40 °C under an Ar atmosphere.

3. The reaction of PI₃ (0.758 g, 1.48 mmol) with (t-Bu)NC(H)C-(H)N(t-Bu) (0.310 g, 1.48 mmol) produced 0.9 g (84%) of darkbrown powder **3**. ¹H NMR (300.14 MHz, CDCl₃): δ 1.84 [s, 18 H, CH₃], 7.94 [s, 2 H, CH=CH]. ¹³C{¹H} NMR (75.48 MHz, CDCl₃): δ 31.33 [d, ${}^{3}J({}^{13}C-{}^{31}P) = 9.4$ Hz, CH $-{}_{3}$], 62.47 [C(CH_3)], 131.11 [C=C]. ³¹P{¹H} NMR (121.52 MHz, CDCl₃): δ 204.3. LRMS (CI⁺, *m/z*) (%): 323 (100%, *t*-Bu–DABP⁺), 143 (38%, t-Bu-DABP⁺-t-Bu). HRMS (CI⁺, CH₄): calcd for C₁₀H₂₀N₂P⁺, 199.1365; found, 199.1365.

4. The reaction of PI₃ (0.467 g, 1.13 mmol) with (p-tol)NC-(Me)C(Me)N(*p*-tol) (0.300 g, 1.13 mmol) afforded 0.68 g (88%) of dark-brown powder 4. ¹H NMR (300.14 MHz, CDCl₃): δ 2.37 [s, 6 H, CH₃], 2.49 [s, 6 H, CH₃], 7.43-7.58 [m, 4 H, H_{aron}]. ¹³C-{¹H} NMR (75.48 MHz, CDCl₃): δ 14.20, 21.66, 127.20 [J(¹³C- ${}^{31}P$) = 5.0 Hz], 131.09, 131.47 [$J({}^{13}C-{}^{31}P)$ = 12.2 Hz], 140.99, 141.73. ³¹P{¹H} NMR (121.52 MHz, CDCl₃): δ 227.1. LRMS (CI⁺, *m/z*) (%): 323 (100%, *p*-tol-DABP⁺). HRMS (CI⁺, CH₄): calcd for C₁₈H₂₀N₂P⁺, 295.1364; found, 295.1364.

5. The reaction of PI₃ (1.41 g, 3.42 mmol) with (Mes)NC(H)C-(H)N(Mes) (1 g, 3.42 mmol) resulted in 2.1 g (87%) of brown powder **3**. ¹H NMR (300.14 MHz, CDCl₃): δ 2.25 [s, 12 H, CH₃], 2.41 [s, 6 H, CH₃], 7.17 [s, 4 H, H_{arom}-Mes], 7.94 [s, 2 H, CH= CH]. ¹³C{¹H} NMR (75.48 MHz, CDCl₃): δ 18.64, 21,28 [CH₃], 130.60, 131.70 $[J({}^{13}C - {}^{31}P) = 6.6 \text{ Hz}]$, 134.11 $[J({}^{13}C - {}^{31}P) = 3.2$ Hz], 136.23 $[J({}^{13}C - {}^{31}P) = 2.7 \text{ Hz}]$, 141.89 $[C_{arom}]$. ${}^{31}P{}^{1}H{}$ NMR (121.52 MHz, CDCl₃): δ 209.7. LRMS (CI⁺, *m/z*) (%): 323 (100%, Mes-DABP⁺). LRMS (CI⁻, m/z) (%): 127 (100%, I⁻). HRMS (CI^+, CH_4) : calcd for $C_{20}H_{24}N_2P^+$, 323.1677; found, 323.1677.

6. The reaction of PI₃ (1.09 g, 2.66 mmol) with (2,6-*i*-Pr₂C₆H₃)-NC(H)C(H)(2,6-*i*-Pr₂C₆H₃) (1 g, 2.66 mmol) afforded 1.9 g (92%) of brown powder 6. ¹H NMR (300.14 MHz, CDCl₃): δ 1.36 [d, ${}^{3}J({}^{1}H-{}^{1}H) = 6.9$ Hz, 24 H, CH₃], 2.69 [m, 4 H, CH], 7.42-7.45 [m, 4 H, C(arom)-dpp], 7.63 [m, 2 H, C(arom)-dpp], 8.05 [s, 2 H, HC=CH]. ¹³C{¹H} NMR (75.48 MHz, CDCl₃): δ 24.73, 25.72, 29.32 [*i*-Pr], 125.19, 130.48, 131.98, 136.26, 145.19 [C(_{arom})]. ³¹P-{¹H} NMR (121.52 MHz, CDCl₃): δ 207.4. LRMS (CI⁺, m/z) (%): 407 (100%, dpp-DABP⁺). LRMS (CI⁻, *m/z*) (%): 127 (100%, I⁻). HRMS (CI⁺, CH₄): calcd for C₂₆H₃₆N₂P⁺, 407.2616; found, 407.2617 (0.1 ppm).

7. The reaction of PI₃ (0.374 g, 0.91 mmol) with (Cy)NC(H)C-(H)N(Cy) (0.2 g, 0.91 mmol) resulted in 0.46 g (81%) of brown powder 7. ¹H NMR (300.14 MHz, CDCl₃): δ 1.39 [tt, 2 H, H_{Cv}], 1.60 [qt, 4 H, H_{Cy}], 1.81-2.05 [complex pattern, 10 H, H_{Cy}], 2.51 [mult, 4 H, H_{Cv}], 4.95 [m, 2 H, H_{Cv}], 7.97 [s, 2 H, CH=CH]. ¹³C-{¹H} NMR (75.48 MHz, CDCl₃): δ 24.74, 25.28 [$J(^{13}C-^{31}P) =$ 1.7 Hz], 35.47 $[J({}^{13}C - {}^{31}P) = 8.83 \text{ Hz}]$, 62.31 $[J({}^{13}C - {}^{31}P) = 9.9$ Hz], 132.15 $[J({}^{13}C - {}^{31}P) = 3.9 \text{ Hz}]$. ${}^{31}P{}^{1}H}$ NMR (121.52 MHz, CDCl₃): δ 209.9. LRMS (CI⁺, *m/z*) (%): 251 (35%, Cy–DABP⁺). HRMS (CI⁺, CH₄): calcd for C₁₄H₂₄N₂P⁺, 251.1677; found, 251.1676.

⁽¹⁸⁾ Haaf, M.; Schmiedl, A.; Schmedake, T.; Powell, D. R.; Millevolte, A.; Denk, M.; West, R. J. Am. Chem. Soc. 1998, 120, 12714. (19)

Verner, J.; Potacek, M. Eur. J. Chem. 2004, 2, 220.

⁽²⁰⁾ Kliegman, J. M.; Barnes, R. K. Tetrahedron 1970, 26, 2555.

⁽²¹⁾ Buys, I. E.; Elgafi, S.; Field, L. D.; Hambley, T. W.; Messerle, B. A. Inorg. Chem. 1994, 33, 1539.

Sheldrick, G. M. SHELL-PC, version 5.03; Siemens Analytical X-ray (22)Instruments, Inc.; Madison, WI, 1994.

One-Step Redox Route to N-Heterocyclic Phosphenium Ions

Synthesis of 8 and 9. A mixture of the appropriate phospenium triiodide salt and NaBPh₄ in 50 mL of THF solution was stirred at room temperature for 12 h. All volatiles were removed under reduced pressure, and the resulting yellow residue was extracted with 30 mL of CH_2Cl_2 to give a clear light-yellow solution. Slow evaporation of the solvent under an Ar atmosphere resulted in the crystalline tetraphenylborate salts 8 and 9 in virtually quantitative yields.

8. The reaction of NaBPh₄ (0.342 g, 1.03 mmol) with **3** (0.2 g, 0.345 mmol) resulted in a virtually quantitative yield of colorless crystalline **8**. ¹H NMR (300.14 MHz, CD₂Cl₂): δ 1.61 [s, 18 H, CH₃], 6.87 [m, 4 H, BPh₄⁻], 7.02 [m, 8 H, BPh₄⁻], 7.94 [s, 2 H, CH=CH], 7.33 [m, 8 H, BPh₄⁻]. ¹³C{¹H} NMR (75.48 MHz, CD₂-Cl₂): δ 31.42 [d, ³J(¹³C-³¹P) = 9.3 Hz), CH-₃], 63.15 [²J(¹³C-³¹P) = 7.7 Hz, C(CH₃)], 122.12 [BPh₄⁻], 125.95 [BPh₄⁻], 132.79 [C=C], 136.22 [BPh₄⁻], 164.19 [BPh₄⁻]. ³¹P{¹H} NMR (121.52 MHz, CD₂Cl₂): δ 202.5. LRMS (CI⁺, *m/z*) (%): 199 (50%, *t*-Bu-DABP⁺), 165 (100%, Ph₂B⁺). HRMS (CI⁺, CH₄): calcd for C₁₀H₂₀N₂P⁺, 199.1365; found, 199.1365.

9. The reaction of NaBPh₄ (0.26 g, 0.762 mmol) with **6** (0.2 g, 0.254 mmol) resulted in a virtually quantitative yield of light-yellow crystals of **9**. ¹H NMR (300.14 MHz, CDCl₃): δ 1.19 [d, ³*J*(¹H–¹H) = 6.9 Hz, 12 H, CH₃], 1.32 [d, ³*J*(¹H–⁻¹H) = 6.9 Hz, 12 H, CH₃], 2.22 [m, 4 H, CH], 6.10 [d, ³*J*(¹H–⁻¹H) = 6.9 Hz, 12 H, CH= CH], 6.74 [t, 4 H, H_{arom}(BPh₄)], 6.90 [t, 8 H, H_{arom}(BPh₄)], 7.38–7.43 [m, 14 H, H_{arom}(BPh₄)], 6.90 [t, 8 H, H_{arom}(BPh₄)], 7.38–7.43 [m, 14 H, H_{arom}(BPh₄)], 4.20 [BPh₄⁻], 130.42, 134.58 [BPh₄⁻], 136.96, 137.67, 142.88, 162.3 [BPh₄⁻], 130.42, 134.58 [BPh₄⁻], 136.96, 137.67, 142.88, 162.3 [BPh₄⁻]. ³¹P{¹H} NMR (121.52 MHz, CDCl₃): δ 204.4 (br). LRMS (CI⁺, *m/z*) (%): 484 (100%, dpp–DABP + Ph), 407 (61%, dpp–DABP). LRMS (CI⁻, *m/z*) (%): 243 (30%, BPh₃). HRMS (CI⁺, CH₄): calcd for C₂₆H₃₆N₂P⁺, 407.2616; found, 407.2626.

Results and Discussion

As summarized in eq 1, the triiodide salts of *N*-alkyl and *N*-aryl-substituted N-heterocyclic phosphenium cations can be readily prepared in one step via the reaction of PI_3 with the appropriate diimine in CH_2Cl_2 solution. In each case,

the yield of crude product is >80% and recrystallization results in 80–90% yields of red crystals of triiodide salts **3–7**. The phosphenium cations in **4–7** have not been reported previously. However, we note that the 4-chloro analogues of **5**⁹ and **7**² have been prepared and structurally characterized, as has the 3,4-dimethyl analogue of **6**.¹⁶ Compounds **3–7** were characterized by ¹H, ¹³C, and ³¹P NMR spectroscopy and high-resolution mass spectrometry

Figure 1. ORTEP diagram of **5** showing thermal ellipsoids at 30% probability with H atoms omitted for clarity.

Figure 2. ORTEP diagram of 7 showing thermal ellipsoids at 30% probability with H atoms omitted for clarity.

Figure 3. ORTEP diagram of 8 showing thermal ellipsoids at 30% probability with H atoms omitted for clarity.

(HRMS). The ³¹P NMR chemical shifts for **3**–**7**, which fall in the range δ 200–230 ppm, are diagnostic of the presence of phosphenium cations¹ and thus supportive of the structural formula depicted in eq 1. Moreover, the CI mass spectra of **3**–**7** evidence a 100% abundance peak corresponding to the phosphenium ion in each case. Structural confirmation was provided by single-crystal X-ray diffraction studies of **3** and **5**–**7**. The metrical parameters for the phosphenium cations are very similar (Table 2); the structures of **5** and **7**, which

are representative of the other cations, are shown in Figures 1 and 2, respectively. Akin to other phosphenium cation structures, the ring C-C bond distances, which range from 1.342(6) to 1.353(6) Å, are shorter than those of typical C–C single bond distances and the C-N bond distances, which range from 1.366(5) to 1.400(5) Å, correspond to a bond order of approximately 1. It is clear from the foregoing spectroscopic and structural data that P adopts the 3+ oxidation state in 3-7. At this point, we have no mechanistic information regarding the diimine/PI3 reactions. However, one scenario is that the interaction of the diimine with PI₃ results initially in the formation of I2 and a donor-acceptor complex between the α -diimine and PI, from which I⁻ is abstracted by I_2 . The process is completed by the subsequent or concomitant transfer of two electrons from the P⁺ moiety into the LUMO of the α -diimine.

Further synthetic utility is conferred on this synthetic method by the observation that 3-7 undergo facile anionexchange reactions with, e.g., NaB(C₆H₅)₄ to afford the corresponding tetraphenylborate salts in virtually quantitative yields. Two such salts have been structurally authenticated, namely, 8 and 9. The structure of 8 is illustrated in Figure

9: $R_1 = 2,6-i-Pr_2C_6H_3$; $R_2 = H$

3. The structures of tetraphenylborate salts of phosphenium ions are of particular interest because of the report by Burford

et al.²³ that **10** undergoes phenyl back-transfer and $B(C_6H_5)_3$ coordination to form the covalent phosphine—borane complex **11** (eq 2). Because the acyclic phosphenium salt

 $[(i-Pr_2N)_2P][B(C_6H_5)_4]$ does not undergo such a transformation, these authors suggested that, in this case, the *N*isopropyl groups provided a sufficient steric barrier to preclude this type of reaction. The structures of **8** and **9**, which feature bulky *t*-Bu and 2,6-*i*-Pr₂C₆H₃ groups, respectively, exhibit no close anion—cation contacts, thus supporting the view of Burford et al.²³ As expected, the metrical parameters for the phosphenium cations in **8** and **9** are identical within experimental error with those in the triiodide salts **3** and **6**, respectively.

Acknowledgment. We are grateful to the Robert A. Welch Foundation (Grant F-0003) and the American Chemical Society Petroleum Research Fund (38970-AC1) for financial support of this work.

Supporting Information Available: X-ray structural data for **3** and **5**–**9**. This material is available free of charge via the Internet at http://pubs.acs.org. The CCDC numbers for these compounds are 623579, 623578, 623576, 623,580, 623581, and 623577, respectively, and can be obtained free of charge upon request via www.ccdc.cam.ac.uk/data_request/cif from The Cambridge Crystallographic Data Centre (12 Union Road, Cmabridge CB2 1EZ, U.K., tel +44 1223 336408, fax +44 1223 336033).

IC061956Z

⁽²³⁾ Burford, N.; Losier, P.; Macdonald, C.; Kyrimis, V.; Bakshi, P. K.; Cameron, T. S. *Inorg. Chem.* **1994**, *33*, 1434.